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ABSTRACT

We propose an interpretable graph neural network framework
to denoise single or multiple noisy graph signals. The pro-
posed graph unrolling networks expand algorithm unrolling
to the graph domain and provide an interpretation of the archi-
tecture design from a signal processing perspective. We unroll
an iterative denoising algorithm by mapping each iteration
into a single network layer where the feed-forward process
is equivalent to iteratively denoising graph signals. We train
the graph unrolling networks through unsupervised learning,
where the input noisy graph signals are used to supervise
the networks. By leveraging the learning ability of neural
networks, we adaptively capture appropriate priors from in-
put noisy graph signals, instead of manually choosing sig-
nal priors. To validate the proposed methods, we conduct
extensive experiments on both real-world datasets and simu-
lated datasets, and demonstrate that our methods have smaller
denoising errors than conventional denoising algorithms and
state-of-the-art graph neural networks. For denoising a single
smooth graph signal, the normalized mean square error of the
proposed networks is around 40% and 60% lower than that of
graph Laplacian denoising and graph wavelets, respectively.

Index Terms— Graph signal denoising, algorithm un-
rolling, graph neural networks

1. INTRODUCTION

Data today is often generated from a diverse sources, in-
cluding social, citation, biological, and physical infrastruc-
ture [1]. Unlike time-series signals or images, such signals
possess complex and irregular structures, which can be mod-
eled as graphs. Analyzing graph signals requires dealing with
the underlying irregular relationships. Graph signal process-
ing generalizes the classical signal processing toolbox to the
graph domain and provides a series of techniques to process
graph signals [1]. Graph neural networks provide a power-
ful framework to learn from graph signals with graphs as in-
duced biases [2]. Permeating the benefits of deep learning
to the graph domain, graph convolutional networks and vari-
ants have attained remarkable success in social network anal-
ysis [3] and computer vision [4].
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In this work, we consider denoising graph signals [5]. In
classical signal processing, signal denoising is one of the most
ubiquitous tasks. To handle graph signals, there are two main-
stream approaches: graph-regularization-based optimization
and graph dictionary design. The optimization approach usu-
ally introduces a graph-regularization term that promotes cer-
tain properties of the graph signal and solves a regularized
optimization problem to obtain a denoised solution [5, 6].
In comparison, the graph-dictionary approach aims to recon-
struct graph signals through a predesigned graph dictionary,
such as graph wavelets [7], and graph frames [8]. These dic-
tionaries are essentially variants of graph filters. A recon-
structed graph signal consists of a sparse combination of ele-
mentary graph signals in a graph dictionary.

A fundamental challenge for both denoising approaches
is that we may not know an appropriate prior on the noiseless
graph signals in practice. It is then hard to either choose an
appropriate graph-regularization term or design an appropri-
ate graph dictionary. Furthermore, some graph priors are too
complicated to be precisely described in mathematical terms
or may lead to computationally intensive algorithms.

To solve this issue, it is desirable to learn an appropriate
prior from given graph signals; in other words, the denois-
ing algorithm should have sufficient feasibility to learn from
and adapt to arbitrary signal priors. In this work, we leverage
the powerful learning ability of graph neural networks and
combine them with interpretablity based on a signal process-
ing perspective. Furthermore, most graph neural networks
are developed for supervised-learning tasks, such node clas-
sification and graph classification [3]. Those tasks require a
large number of ground-truth labels, which is expensive to
obtain. Here we consider an unsupervised-learning setting,
where the networks have to learn from a few noisy graph
signals and the ground-truth noiseless graph signals are un-
known. Through unsupervised learning, we demonstrate the
generalization ability of the proposed graph neural networks.

Our goal is to develop a graph network denoising frame-
work by combining advantages of both conventional graph
signal denoising algorithms and graph neural networks. Here
we expand algorithm unrolling to the graph domain [9]. We
first propose a general iterative algorithm for graph signal
denoising and then transform it to a graph neural network
through algorithm unrolling, where each iteration is mapped
to a network layer. Compared to conventional denoising al-



gorithms [5], the proposed graph unrolling network can learn
a variety of priors from given graph signals by leveraging
deep neural networks. Compared to many other graph neural
networks [3], the proposed graph unrolling network is inter-
pretable by following analytical iterative steps. To train graph
unrolling networks, we use single or multiple noisy graph sig-
nals and minimize the difference between the original input
and the network output; in other words, the input noisy mea-
surements are used to supervise the neural network training.

To validate the empirical performance of the proposed
method, we conduct a series of experiments on both simu-
lated datasets and real-world datasets with mixture Gaussian
and Laplace noises. We find that graph unrolling networks
consistently achieve better denoising performances than con-
ventional graph signal denoising algorithms and state-of-the-
art graph neural networks on various types of graph signals
and noise models. Even for denoising a single smooth graph
signal, the proposed graph unrolling networks are around
40% and 60% better than graph Laplacian denoising [10] and
graph wavelets [7], respectively. This demonstrates that the
unrolling approach allows to obtain improved results over
existing methods even using a single training point.

The main contributions of this work include:
● We propose interpretable graph unrolling networks by

unrolling a general iterative algorithm for graph signal de-
noising in an unsupervised-learning setting; and

● We conduct experiments on both simulated and real-
world data to validate that the proposed denoising methods
outperform both conventional graph signal denoising meth-
ods and state-of-the-art graph neural networks on various
types of graph signals and noise models.

2. DENOISING NETWORKS VIA UNROLLING

2.1. Problem Formulation

We first mathematically formulate the task of graph sig-
nal denoising. We consider a graph G = (V,E ,A), where
V = {vn}

N
n=1 is the set of vertices, E = {em}Mm=1 is the set of

undirected edges, and A ∈ RN×N is the graph adjacency ma-
trix, representing connections between vertices. The weight
Ai,j of an edge from the ith to the jth vertex characterizes the
relation, such as similarity or dependency, between the corre-
sponding signal values. Using the graph representation G, a
graph signal is defined as a map that assigns a signal coeffi-
cient xn ∈ R to the vertex vn. A graph signal can be written
as a length-N vector defined by x = [x1 x2 . . . xN ]

T
,

where the nth vector element xn is indexed by the vertex vn.
Assume that we are given a length-N noisy measurement

t = x+e, where x is the noiseless graph signal and e is noise.
The goal of graph signal denoising is to recover x from t by
removing the noise.

Without any prior information on the noiseless graph
signals, it is impossible to split noises from the measure-

ments. Possible priors include sparsity, graph smoothness
and graph piecewise-smoothness [11]. Here we consider
a general graph signal model in which the graph signal
is generated through graph filtering over vertices; that is,
x = h ∗v s = ∑

L
`=1 h`A

` s, where s ∈ RN is a base graph
signal, which may not have any graph-related properties,
∗v indicates a convolution on the graph vertex domain and
h = [h1 h2 ⋯ hL]

T
∈ RL are the filter coefficients

with L the filter length. Here we consider a typical design
of a graph filter, which is a polynomial of the graph shift.
The graph filtering process modifies a given base graph sig-
nal according to certain patterns of the graph and explicitly
regularizes the output.

Based on this graph signal model, we can remove noises
by solving the following optimization problem:

min
s∈RN

1

2
∣∣t − x∣∣22 + u(Px) + r(Q s), (1)

subject to x = h ∗v s,

where u(⋅), r(⋅) ∈ R are additional regularization terms on s
and x respectively and P and Q are two matrices. The de-
noised graph signal is then given by h ∗v s. It is straightfor-
ward to show that graph Laplacian denoising, graph sparse
coding and graph trend filtering are special cases of (1).

2.2. Algorithm Unrolling

Consider a general iterative algorithm to solve the graph
signal denoising problem (1) based on the half-quadratic
splitting algorithm. The basic idea is to perform variable-
splitting and then alternating minimization on the penalty
function [12]. Introduce two auxiliary variables y = Px and
z = Q s and then reformulate (1) as

min
s∈RN

1

2
∥t − x∥

2
2 + u(y) + r(z),

subject to x = h ∗v s, y = Px, z = Q s.

The penalty function is J(x, s,y,z) = ∥t − x∥
2
2 /2 + u(y) +

r(z)+µ1 ∥x − h ∗v s∥
2
2 /2+µ2 ∥y −Px∥

2
2 /2+µ3 ∥z −Q s∥

2
2 /2,

where µ1, µ2, µ3 are appropriate step sizes. We alternately
minimize J over x, s,y,z, leading to the following updates:

x ← P̃(µ1h ∗v s + t + µ2P
T y), (2a)

s ← Q̃(µ1h ∗
T
v x + µ3Q

T z), (2b)

y ← argmin
y

µ2

2
∥y −Px∥

2
2 + u(y), (2c)

z ← argmin
z

µ3

2
∥z −Q s∥

2
2 + r(z), (2d)

where
P̃ = (I+µ1 I+µ2P

T P)
−1



and

Q̃ = (µ1

L

∑
`′=1

h`′ A
`′

L

∑
`=1

h`A
`
+µ3Q

T Q)
−1.

Intuitively, (2a) denoises by merging information from the
original measurements t, filtered signals h ∗v s and the aux-
iliary variable y; (2b) generates a base graph signal through
graph deconvolution; and (2c) and (2d) solve two proximal
functions with regularization u(⋅) and r(⋅), respectively.

To unroll the iteration steps (2), we consider two ma-
jor substitutions. First, we replace the fixed graph convo-
lution by the graph convolution with trainable filter coeffi-
cients. Second, we replace the sub-optimization problems
in (2c) and (2d) by a trainable neural network.

The bth unrolling layer for denoising a graph signal is,

x(b+1) ← A ∗a s
(b)

+B ∗a t(b) +C ∗a (PT y(b)) ,(3a)

s(b+1) ← D ∗a x
(b+1)

+E ∗a (QT z(b)) , (3b)

y(b+1) ← NNu (Px(b+1)) , (3c)

z(b+1) ← NNr (Q s(b+1)) , (3d)

where A∗a, B∗a, C∗a, D∗a, and E∗a are individual trainable
graph convolutions with filter coefficients that are trainable
parameters with subscript a indicating trainable, and NNu(⋅)

and NNr(⋅) are two neural networks, which involve trainable
parameters. Intuitively, (3a) and (3b) are neural-network im-
plementations of (2a) and (2b), respectively, replacing fixed
graph convolutions h∗v by trainable graph convolutions A∗a;
and (3c) and (3d) are neural-network implementations of the
proximal functions (2c) and (2d), respectively, using neural
networks to solve sub-optimization problems; see similar sub-
stitutions in [13, 14, 15]. Instead of following the exact math-
ematical relationship in (2), we allow trainable operators to
adaptively learn from data, usually reducing a lot of compu-
tation. The implementations of (3c) and (3d) depend on spe-
cific regularization terms, u(⋅) and r(⋅). For some u(⋅), r(⋅),
we might end up with an analytical form for (3c) and (3d).

To build a complete network architecture, we initialize
z(0), s(0),y(0) to be all-zero matrices and sequentially stack
B unrolling layers (3). This is hypothetically equivalent to
running the iteration steps (2) for B times. Through opti-
mizing trainable parameters in trainable graph convolutions
and two sub-neural-networks, we obtain the denoised out-
put x̂ = x(B). Here all the trainable parameters come from
two parts, including filter coefficients in each trainable graph
convolution and the parameters in the neural networks (3c)
and (3d). Through optimizing those parameters, we can cap-
ture complicated priors in the original graph signals in a data-
driven manner. To train those parameters, we consider the
loss function

loss = ∥f (t) − t∥
2
2 = ∥x̂ − t∥

2
2 , (4)

where x̂ is the output of the proposed network f(⋅), and t
are the original measurements. We then use the stochastic

gradient descent to minimize the loss and optimize this net-
work [16]. The noisy measurement t is used as both input and
supervision of the network. Note that it is straightforward to
expand this setting to train with multiple graph signals.

Our algorithm unrolling here is rooted in the half-quadratic
splitting algorithm. In practice, our optimization problem can
be solved using various alternative iterative algorithms, which
may lead to distinct network architectures. No matter what
iterative algorithm is used, the core strategy is to follow
the iterative steps and use trainable graph convolution to
substitute fixed, yet computationally expensive graph filter-
ing. We call a network architecture that follows this strategy
a graph unrolling network (GUN). Compared to conventional
graph signal denoising algorithms [5, 10], the proposed GUN
is able to learn a variety of complicated signal priors from
given graph signals by leveraging the learning ability of deep
neural networks. Compared to many generic graph neural
networks [3], the proposed GUN is interpretable by follow-
ing analytical iterative steps. We unroll an iterative algorithm
for solving (1) into a graph neural network by mapping each
iteration into a single network layer and stacking multiple lay-
ers together. Therefore, the proposed GUN can be naturally
interpreted as a parameter optimized algorithm.

3. EXPERIMENTAL RESULTS

We now validate the superiority of the proposed method.

3.1. Dataset

U.S. temperature data. We consider 150 weather sta-
tions in the United States that record their local tempera-
tures [17]. Each weather station has 365 days of recordings
(one recording per day), for a total of 54,750 measurements.
The graph representing these weather stations is obtained
by measuring the geodesic distance between each pair of
weather stations. The vertices are represented by an 8-nearest
neighbor graph, in which vertices represent weather stations,
and each stations is connected to the eight closest weather
stations. Each graph signal is the daily temperature values
recorded in each weather station.

NYC traffic data. We consider the taxi-pickup activity in
Manhattan on January 1th, 2014. This is the Manhattan street
network with 2,552 intersections and 3,153 road segments.
We model each intersection as a vertex and each road seg-
ment as an edge. We model the taxi-pickup positions as sig-
nals supported on the Manhattan street network. We project
each taxi-pickup to its nearest intersection, and then count
the number of taxi-pickups at each intersection. Each graph
signal is the hourly number of taxi-pickups recorded in each
intersection.

Cora. We finally consider a citation network dataset,
called Cora [3]. The datasets contain sparse bag-of-words
feature vectors for each document and a list of citation links



TEMPERATURE TRAFFIC CORA

METRIC NMSE NMSE ERROR RATE F1 SCORE

METHOD 1 365 1 24 1 7 1 7

BASELINE 0.34 0.377 0.392 0.377 0.095 0.099 0.829 0.695
GLD 0.045 0.024 0.248 0.255 0.055 0.032 0.609 0.793
GTF 0.079 0.036 0.202 0.176 0.06 0.039 0.484 0.532
GFT 0.065 0.053 0.257 0.231 0.079 0.053 0.459 0.489

SGWT 0.069 0.11 0.184 0.162 0.074 0.073 0.551 0.569
QMF 0.26 0.31 0.18 0.185 0.087 0.087 0.51 0.512
CSFB 0.07 0.061 0.344 0.36 0.129 0.143 0.43 0.437

MLP 0.142 0.027 0.31 0.169 0.095 0.072 0.829 0.695
GCN 0.041 0.033 0.293 0.279 0.042 0.025 0.903 0.901
GAT 0.044 0.031 0.267 0.264 0.041 0.032 0.909 0.873

GUN 0.037 0.016 0.324 0.178 0.04 0.024 0.91 0.906

Table 1: Denoising error of real-world data with mixture noises (Gaussian and Laplace).

between documents. We treat each citation link as an undi-
rected edge and each document as a class label. The citation
network has 2,708 nodes and 5,429 edges and 7 class labels.
We consider 7 class labels as graph signals. We introduce
Bernoulli noises and randomly flip 10% of the binary values.

3.2. Experimental setup

We consider three classes of competitive denoising algo-
rithms: graph-regularized optimizations, graph filter banks
and neural networks. For graph-regularized optimizations,
we select graph Laplacian denoising (GLD) [10] and graph
trend filtering (GTF) [6]. For graph filter banks, we con-
sider graph Fourier transform (GFT) [10], spectral graph
wavelet transform (SGWT) [7], graph quadrature-mirror-
filters (QMF) [18] and critically sampled filter banks (CSFB) [19].
As competitive neural networks, we consider multilayer per-
ception with three fully-connected layers [16], graph convolu-
tion networks (GCN) with three graph convolution layers [3],
graph attention networks (GAT) with one graph attention
layer [20] and graph autoencoder (GAE) with three graph
convolution layers and one kron-reduction pooling layer [21].

Noise models. We consider two types of noises to validate
the denoising algorithms: the mixture noise and Bernoulli
noise. For the mixure noise, each element of e follows a mix-
ture of Gaussian distribution and Laplace distribution; that is,
ei ∼ N (0, σ2)+Laplace(0, b). By default, we set σ = 0.2, b =
0.2. For binary graph signals, we consider adding Bernoulli
noise [22]; that is, we randomly select a subset of vertices and
flip the associated binary values.

Evaluation metrics. To evaluate the denoising perfor-
mance, the default metric is the normalized mean square error
(NMSE); that is, NMSE = ∥x̂ − x∥

2
2/∥x∥

2
2, where x ∈ RN

is a noiseless graph signal, and x̂ is a denoised graph sig-
nal. A smaller value of NMSE indicates a better denois-
ing performance. We also consider the normalized mean ab-
solute error (NMAE); that is, NMAE = ∥x̂ − x∥1/∥x∥1.

For binary graph signals, we evaluate by the error rate (ER),
ER = ∑

N
i=1 1(xi ≠ x̂i)/N, where xi and x̂i are the ith ele-

ment in x, x̂, respectively. A smaller value of ER indicates a
better denoising performance. We also consider the F1 score,
which is the harmonic mean of the precision and recall. A
higher value of F1 indicates a better denoising performance.

3.3. Results
Table 1 shows the denoising performances across three

datasets. Columns 2 − 3 show the performances of the tem-
perature dataset with two different numbers of graph signals:
1 and 365; Columns 4 − 5 show the performances of the traf-
fic dataset with two different numbers of graph signals: 1 and
24; and Columns 6−9 show the performances of Cora dataset
with two different numbers of graph signals: 1 and 7. We
see that i) the proposed GUN significantly outperforms all
the other competitive methods in terms of either NMSE or
F1 score; ii) even denoising a single graph signal, the pro-
posed GUN is much better than graph Laplacian denoising
and graph wavelets; and iii) when more training data is avail-
able, the proposed two graph unrolling networks get better
performance, reflecting the powerful learning ability to adapt
to complicated data.

4. CONCLUSIONS

We propose graph unrolling networks, which is an in-
terpretable neural network framework to denoise single or
multiple noisy graph signals. The proposed graph unrolling
networks expand algorithm unrolling to the graph domain.
Through extensive experiments, we show that the proposed
methods produce smaller denoising errors than both conven-
tional denoising algorithms and state-of-the-art graph neural
networks. Even for denoising a single graph signal, the nor-
malized mean square error of the proposed networks is around
40% lower than that of graph Laplacian denoising, reflecting
the advantages of learning from only a few training samples.
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